Core-Sets for Polytope Distance Mittagsseminar

Martin Jaggi, 9.10.2008

Contents

What are Core-Sets good for?

- Smallest Enclosing Ball
- Extent
- Clustering

Core-Sets for Polytope Distance

- Lower bound
- Upper bound: A new analysis for an old algorithm

Smallest Enclosing Ball

 $\begin{array}{c} \textbf{Core-sets} & \begin{bmatrix} 1 \\ - \\ \epsilon \end{bmatrix} \\ \hline \end{array}$

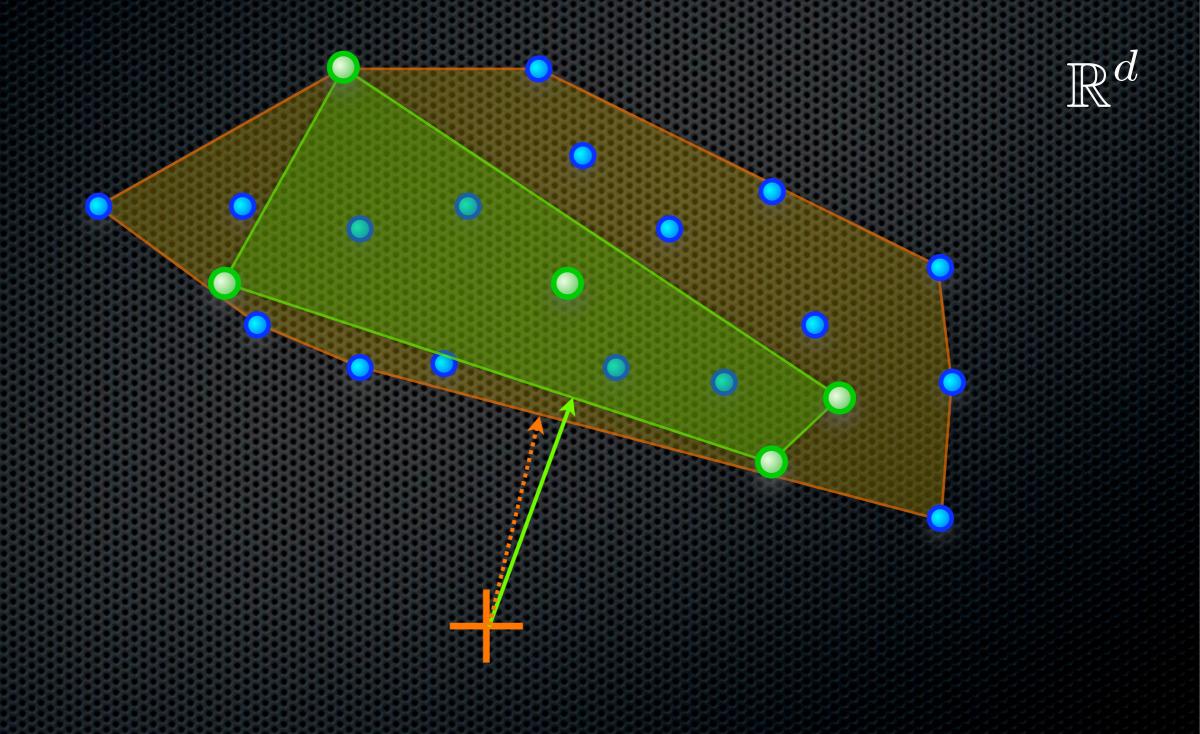
 \mathbb{R}^{d}

Core-Sets for Extent

 \mathbb{R}^{d}

Core-Sets for Clustering

Core-Sets for Polytope Distance



Definition: Approximation

 \mathcal{X}

 \mathcal{X}

 $\omega(x)$

A point x inside the polytope is called a $0<\epsilon<1$

 $(1 - \epsilon)$ -approximation

iff

 $f(x) - \omega(x) < \epsilon f(x)$

Definition: Core-Set

A subset $S \subseteq P$ of the points is called an

ϵ -core-set

if the point of conv(S) closest to the origin is a $(1-\epsilon)$ -approximation

Definition: Excentricity

The excentricity of a polytope is

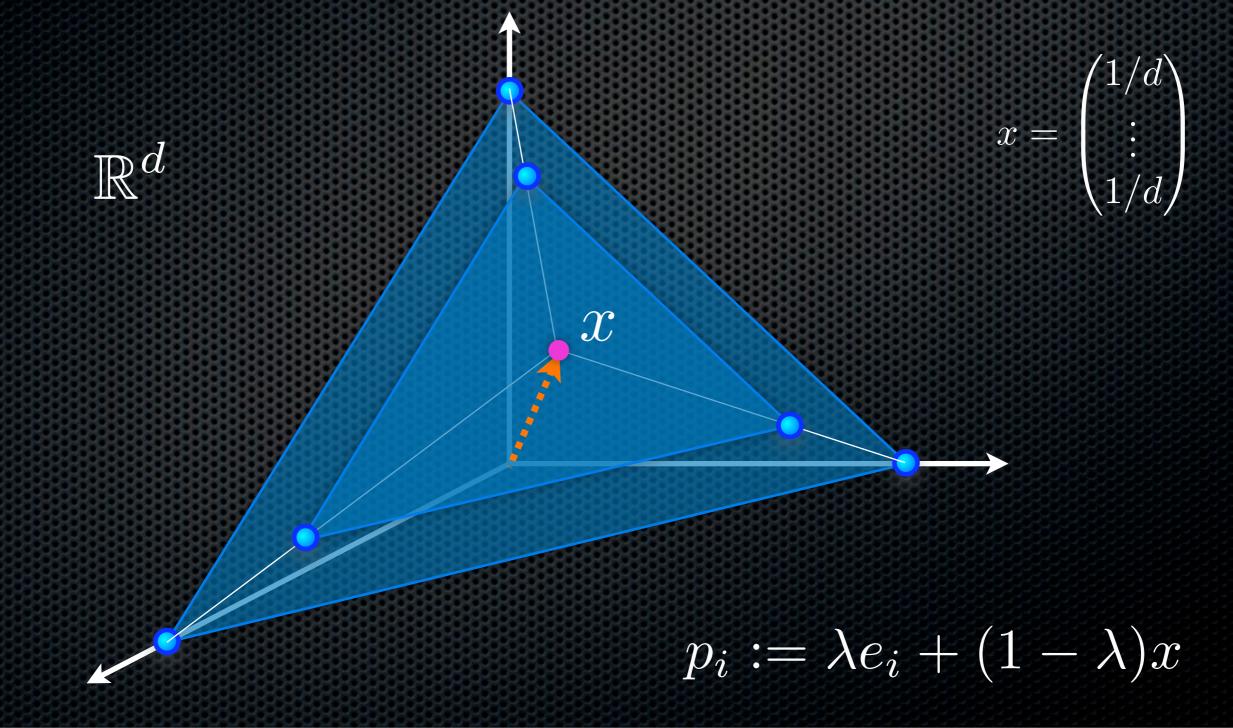
$$E := \frac{1}{2} \frac{D^2}{\rho^2}$$

 $D := \max_{p,q \in P} \|p - q\|$ $\rho := \text{true polytope distance}$

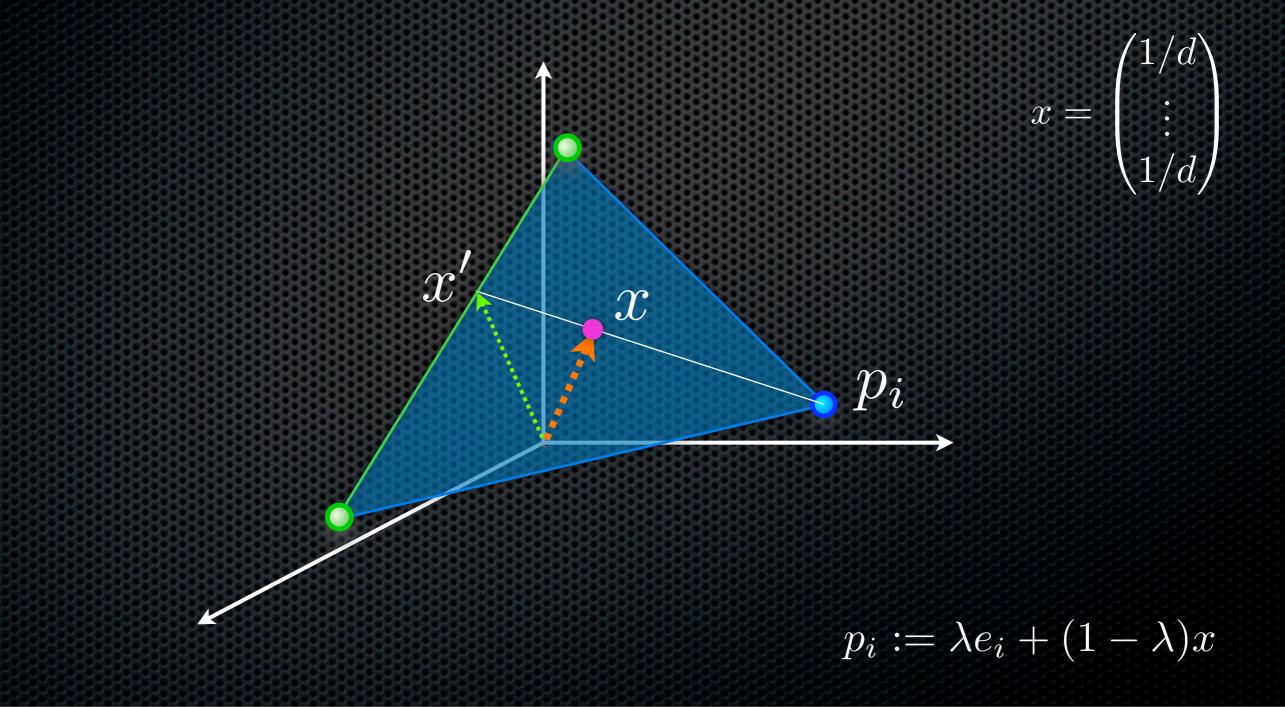
For any $0 < \epsilon \le 1$ there exists a set of points in \mathbb{R}^d such that any ϵ -core-set has size at least

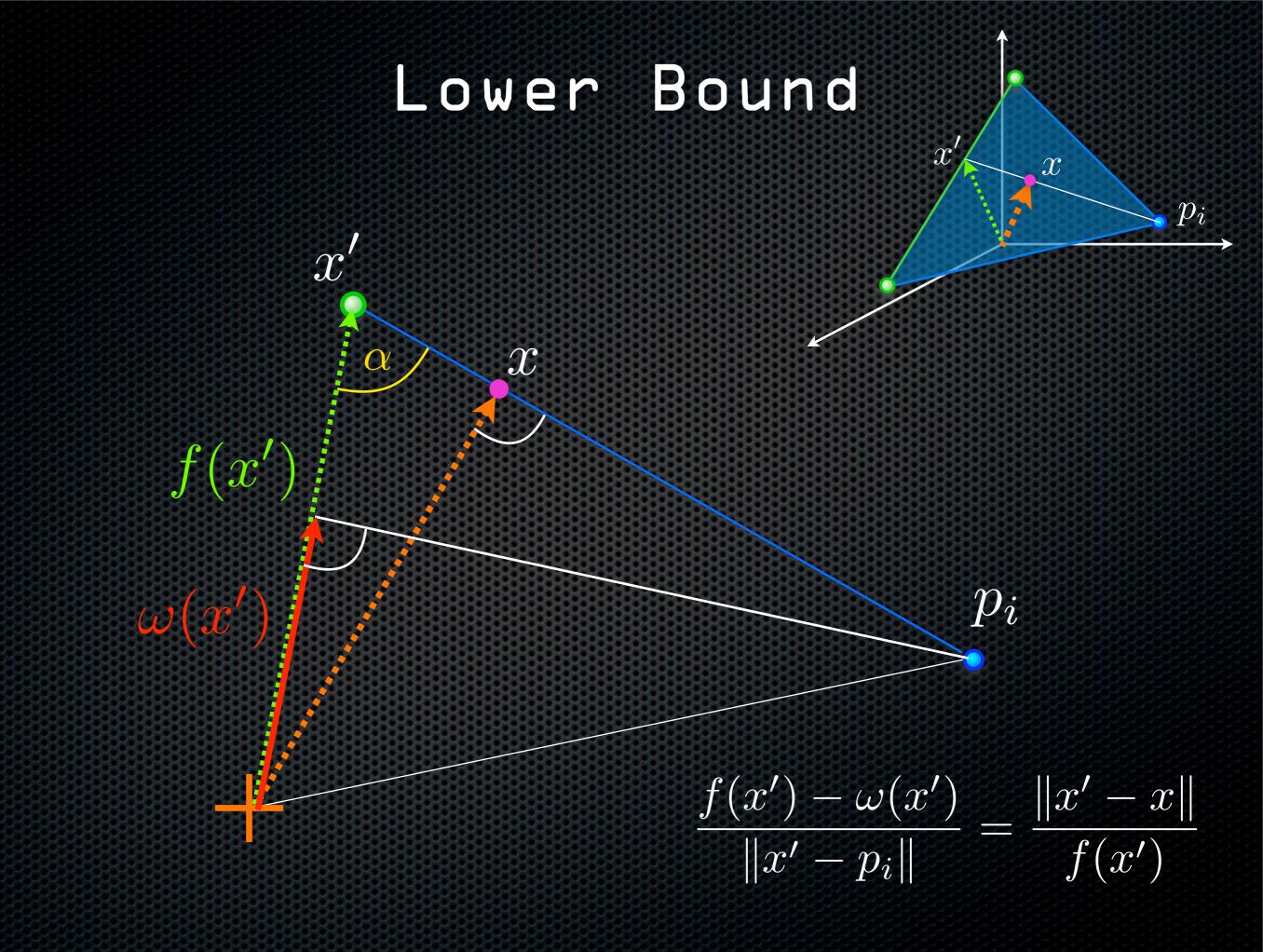
 $\left| \frac{E}{\epsilon} \right|$

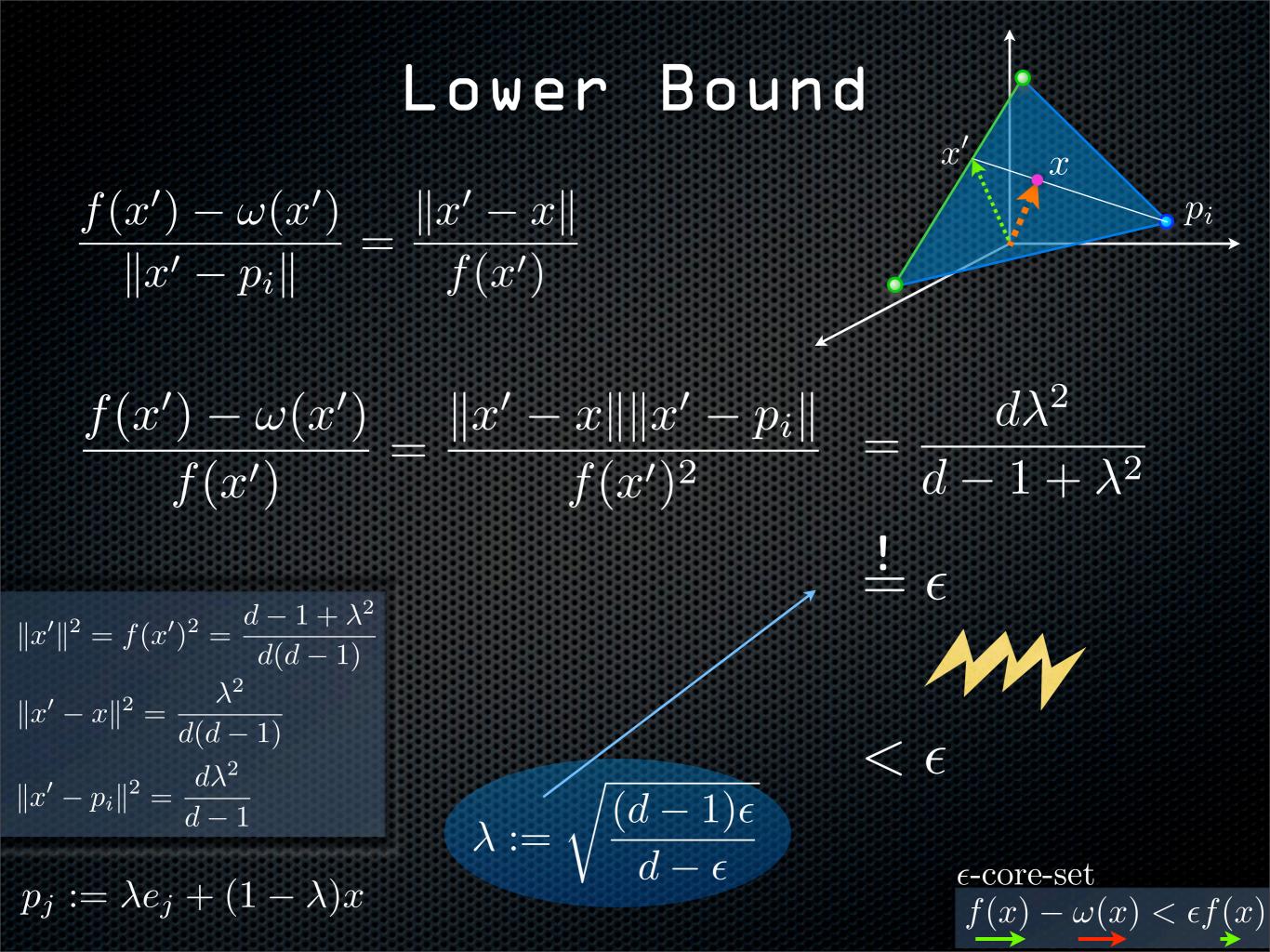
Point set such that no strict subset can possibly be an ϵ -core-set ?



Point set such that no strict subset can possibly be an ϵ -core-set ?







If we choose $\lambda := \sqrt{rac{(d-1)\epsilon}{d-\epsilon}}$

Every ϵ -core-set must have size at least d.

$$d = d\lambda^2 \frac{d - \epsilon}{(d - 1)\epsilon} = \frac{E}{\epsilon} \left(1 + \frac{1 - \epsilon}{d - 1} \right)$$

 $E := \frac{1}{2} \frac{D^2}{\rho^2}$

 $E = d\lambda^2$

x

 \mathcal{X}

 $p_j := \lambda e_j + (1 - \lambda)x$

 p_i

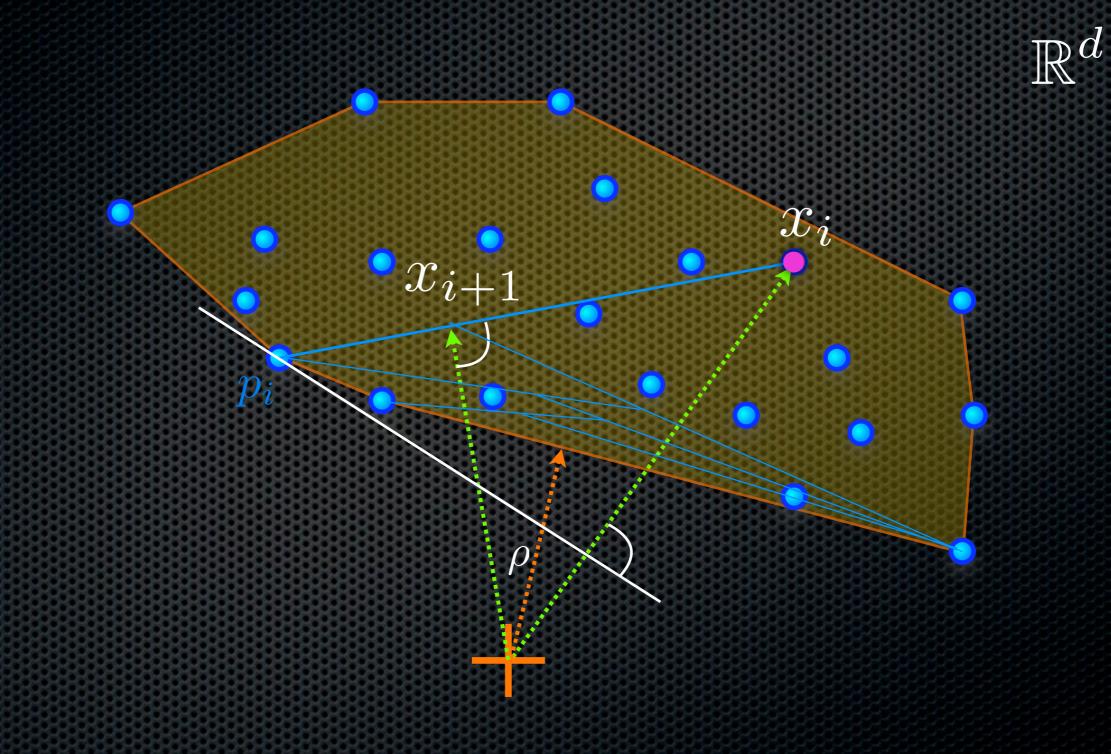
Every ϵ -core-set must have size at least $\left[\frac{E}{\epsilon}\right]$.

Upper Bound

How to construct small core-sets?

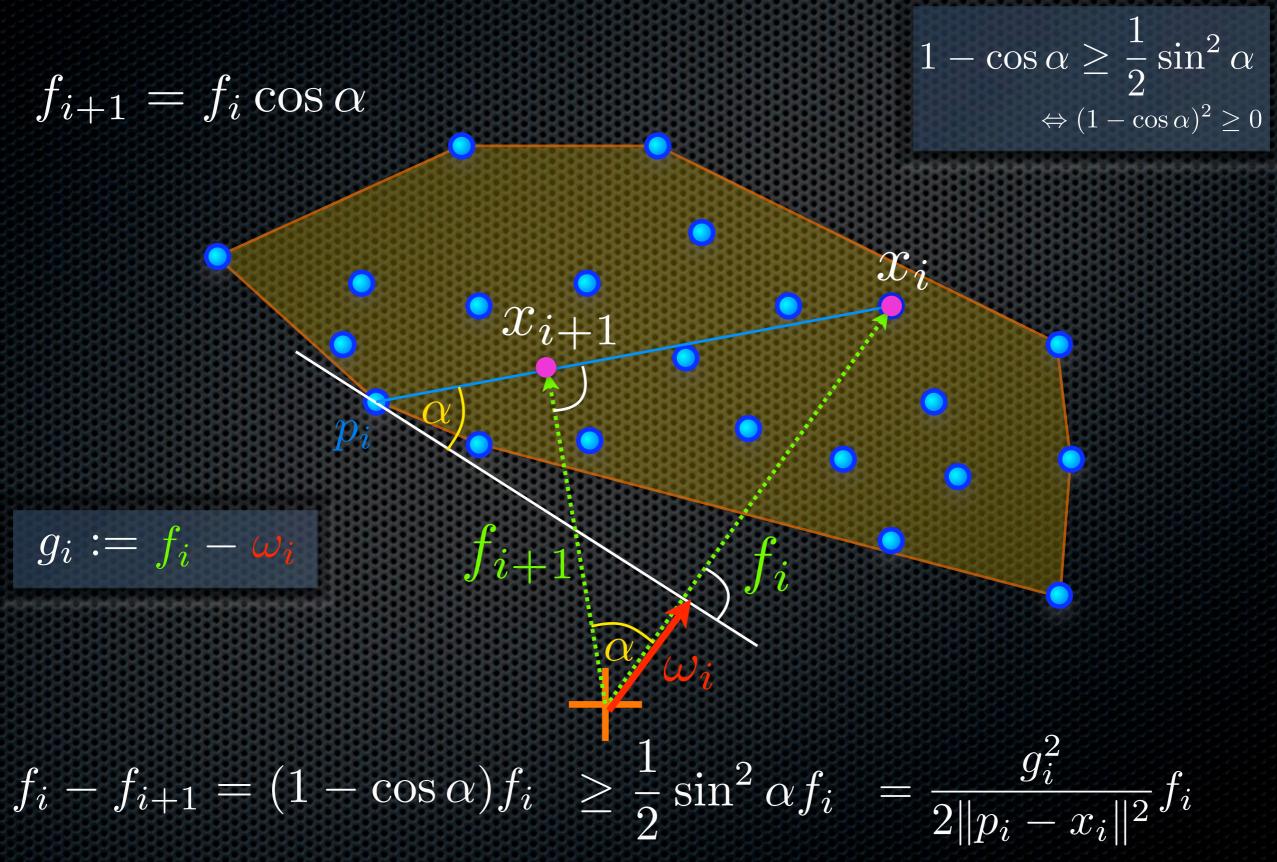
- Gilbert's Algorithm `66
 - Frank / Wolfe Approximation Algorithm `56
 - Coordinate-wise Gradient Descent
 - Sparse Greedy Approximation

Gilbert's Algorithm



Theorem

For any polytope Gilbert's Algorithm returns a $(1 - \epsilon)$ -approximation after at most $\left[\frac{8E}{\epsilon}\right]$ many steps.



 $f_i - f_{i+1} \ge \frac{g_i^2}{2\|p_i - x_i\|^2} f_i$ 11 $h_i - h_{i+1}$ $g_i := f_i - \omega_i$ $h_i := f_i - \rho$ $g_i \ge h_i$

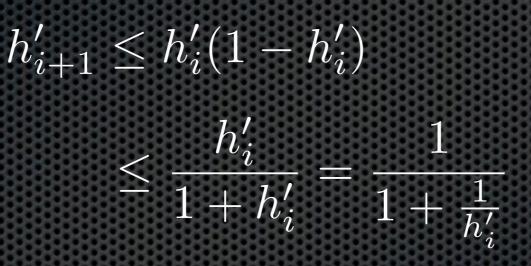
 $\geq \frac{g_i^2}{2D^2}\rho$ $=\frac{1}{4E\rho}g_i^2$ $\geq \frac{1}{4E\rho}h_i^2$

 $E := \frac{1}{2} \frac{D^2}{o^2}$

 $h'_i - h'_{i+1} \ge {g'_i}^2 \ge {h'_i}^2$

 $h'_i := \frac{1}{4E\rho} h_i \qquad g'_i := \frac{1}{4E\rho} g_i$

 $h'_i - h'_{i+1} \ge {g'_i}^2 \ge {h'_i}^2$



 $1 - \gamma \le \frac{1}{1 + \gamma}$

 $g_i := f_i - \omega_i$ $h_i := f_i - \rho$

 $g_i \ge h_i$

By induction we get: $h_k' \leq \frac{1}{k+2} \qquad \qquad h_0' \leq \frac{1}{2}$

 $h'_k < \epsilon' \quad \text{for} \quad k \ge K := \left\lceil \frac{1}{\epsilon'} \right\rceil$

 $h'_k < \epsilon'$ for

$$k \ge K := \left\lceil \frac{1}{\epsilon'} \right\rceil$$

 $g_k' < \epsilon'$ for some

 $g_k < \epsilon
ho$ for some

 $g_i := f_i - \omega_i$

 $h_i := f_i - \rho$

 $q_i \ge h_i$

 $k \le \left\lceil \frac{8E}{\epsilon} \right\rceil$

 $K \le k \le 2K$

$$p_i$$
 f_{i+1} f_i

$$h'_i - h'_{i+1} \ge {g'_i}^2 \ge {h'_i}^2$$

$$g_k = f_k - \omega_k < \epsilon \rho \le \epsilon f_k$$

So we obtain a $(1-\epsilon)$ -approximation after at most $\left\lceil \frac{8E}{\epsilon} \right\rceil$ many steps.

Conclusion

Lower bound Every ϵ -core-set must have size at least $\left[\frac{E}{\epsilon}\right]$.

Upper bound

For any polytopen an ϵ -core-set of size $\left\lceil \frac{8E}{\epsilon} \right\rceil$ exists by the analysis of Gilbert's Algorithm.

Open Question: Why is there still a gap of 2 ?

Conclusion

Lower bound Every ϵ -core-set must have size at least $\left[\frac{E}{\epsilon}\right]$.

Upper bound

For any polytopen an ϵ -core-set of size $\left\lceil \frac{2E}{\epsilon} \right\rceil$ exists by the analysis of Clarkson's Away Steps Algorithm.

Open Question: Why is there still a gap of 2 ?

Applications

Running time

Gilbert's Algorithm runs in time O(nd) for ϵ constant.

Distance between 2 polytopes Run Gilbert's Algorithm on the Minkowski Difference.

($\Theta(n^2)$ vertices, but still O(nd) running time)

Applications

Core-sets for Support Vector Machines We can guarantee zero errors on the training data after only [8E] steps. $\epsilon := 1$

Sparseness of approximate solutions

Using the upper and lower bounds for the

sparseness of approximate solutions

we know the effect of different

* geometric kernels

* regularization parameter values

on this sparsity.

Thanks for your attention!

 ω_{i}

 x_{i+1}

J. i.

 x_{i-1}

 α

 ω_i

 x_i